Ramon Chips, Haifa, Israel

Ramon Chips is named in memory of Col. Ilan Ramon, Israeli astronaut who died on board the Columbia space shuttle, 1/2/2003

RadSafe[™] Technology and

JPEG200 image compression ASSP

Prof. Ran Ginosar, CEO, Ramon Chips

MAFA, November 2007

Summary

- RadSafe™: Technology for RH ASICs
 - Rad-Hard-by-design
 - ASICs designed "normally" standard EDA
 - On commercial CMOS processes
- Examples
 - FPGA conversions
 - LEON3-based SoC
 - 150 MHz, dual-core
 - JPEG2000 encoder
 - 44 Mpix/sec, 1 Tops
 - 4Mbit + 500Kgates, 30 M Tx, < 3W

Ramon Chips History

- 2002-2004 research at Technion—Israel Institute of Technology
- Incorporated in 2004
- Privately held
- Already made, qualified and delivered several Rad-Hard ASICs

Goals

- Rad-Hard
- Low cost
- Short time-to-product

Various Chips

FPGA conversion

Radiation & qualification test

LEON3 SoC prototype

Ramon Chips Technology

- RadSafe[™] Rad Hard By Design
 - Standard commercial 0.18u CMOS process
 - Special libraries (our own)
 - Special methodology
 - Standard EDA and flow for ASIC design
- Why use a standard commercial process?
 - Inexpensive
 - Reliable
 - High performance
 - Available: Can fabricate any time
- Result: RH infrastructure for normally designed ASICs

TID protection

- Achieved by geometry
 - At transistor level
- Result: RH levels (300 Krad)
 - All space missions
 - Long life

Latch Up (SEL) protection

- Achieved by geometry
 - At transistor level
- Result: No SEL ever detected
 - At LET above 100 MeV cm²/mg

SET protection

- Glitch filters
 - No delays inserted
- Special methodology
 - No asynchronous signals
 - Special clock trees

SEU protection (flip-flops)

- Special FFs
 - Continuous self-correction
 - Spread wider than heavy-ion impact area
- SEU tests:
 - Less than 10⁻¹² errors/bit/ day [LEO]
 - LET threshold 38 MeV·cm²/mg
 - Tested up to LET above 100 MeV·cm²/mg

SEU protection (SRAM cores)

- EDAC (optional)
- Special layout / placement
 - Separated bits of same word
- SEU levels in SRAM
 - Less than 2 × 10⁻⁷ errors/bit/ day [LEO]
 - LET threshold 3 MeV cm²/mg
 - Tested up to LET above 100 MeV cm²/mg
 - In tests, all errors were corrected by EDAC
 - Typical MTBF > 1,000 years

SRAM cores

- Single port SRAM
 - Speed >250MHz
- Dual port SRAM
 - Speed >120MHz
- Power 2nW/MHz/bit

RH Libraries

- Logic standard cell library
 - >80 cells
 - 100—200 MHz
 - 1.8V and 3.3V
- I/O cell library
 - LVTTL, LVCMOS, LVDS, 5Vtolerant, Cold Spare, SSTL, AGP
 - High speed I/O > 400 Mbits/sec
- SRAM
- Digital DLL
- Libraries enable large chips
 - 5 Mgates or 8 Mbit or combinations

RH Physical Design

- Robust layout cells and methods
 - Solid power grid
 - Special interconnect design rules
 - Special via design rules
 - Special stress relief rules
 - Rad-Hard ESD cells

First Test Chip (1.8+3.3 V)

SRAM 1.8V

Functional logic

DLL 1.8V

Logic Pad-ring

Test Pad-ring

1.8V Shift Reg

1.8V Ring Osc

1.8V Lib Cells

1.8V Transistors

3.3V Transistors

3.3V Lib cells

3.3VRing Osc

3.3V Shift Reg

FPGA-ASIC Conversion

- For a SAR payload
 - Transmitter control
- 3x faster
- Lower power
 - Reduced > 95%
- Shared die with a test chip

LEON3FT SoC

- Prototype in 2006
 - GR702RC
- Tested:
 - 120 MHz (CPU)
 - 250 Mbps (SpW)
 - All SEUs corrected

GR702RC SoC Test Board

GR712RC: LEON3FT SoC

- Planned for 2008
- Dual Core, 150 MHz
- Multiple I/O ports
 - 6 SpW, 2 CAN, 1553, Ethernet, CCSDS
 TM/TC, SPI, I2C, 6 UART, ...
 - Selectable subset configurations
- Ceramic 256-pin QFP to support speed

Image Compression ASSP

- Standard JPEG2000
 - From Alma Tech (GR)
- 4 Mbit (150 cores), 500 Kgates, 30M transistors, 12×12mm, < 3W
- Uses 2 external SDRAMs (88MHz)
- Pre-validated on FPGA at full speed
- For imaging satellites
 - ASSP: 44 12-bit Mpix/s, 1 Tops
 - Many ASSPs in system
- Fab in 2008

JPIC Layout (mostly memories)

Summary

- RadSafe™
 - On commercial process, using standard EDA
 - Proven Rad-Hard-by-design
 - Proven quality
 - High performance, low power, low cost ASICs
- Example projects
 - FPGA conversions
 - LEON3FT-based dual-core SoC
 - JPEG2000 encoder

